References
1.
VanderWeele TJ. Mediation
Analysis: A Practitioner’s
Guide. Annual Review of Public Health [Internet] 2016
[cited 2022 Aug 17];37:17–32. Available from: https://doi.org/10.1146/annurev-publhealth-032315-021402
2.
Wang
A, Arah OA. G-computation demonstration in causal mediation analysis.
European Journal of Epidemiology [Internet] 2015 [cited 2023 Jun
20];30:1119–27. Available from: https://doi.org/10.1007/s10654-015-0100-z
3.
Rrn
R, Ag C, Mk B, Sm G, H L, Jh M. A Systematic
Review of the Reporting Quality
of Observational Studies That
Use Mediation Analyses.
Prevention science : the official journal of the Society for Prevention
Research [Internet] 2022 [cited 2023 Sep 27];23. Available from: https://pubmed.ncbi.nlm.nih.gov/35167030/
4.
Rijnhart JJM, Lamp SJ, Valente MJ, MacKinnon
DP, Twisk JWR, Heymans MW. Mediation analysis methods used in
observational research: A scoping review and recommendations. BMC
Medical Research Methodology [Internet] 2021 [cited 2023 Sep
27];21:1–17. Available from: https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-021-01426-3
5.
Tennant PWG, Murray EJ, Arnold KF, Berrie L,
Fox MP, Gadd SC, Harrison WJ, Keeble C, Ranker LR, Textor J, et al. Use
of directed acyclic graphs (DAGs) to identify confounders
in applied health research: Review and recommendations. International
Journal of Epidemiology [Internet] 2021 [cited 2023 Nov 13];50:620–32.
Available from: https://doi.org/10.1093/ije/dyaa213
6.
Imai
K, Tingley D, Yamamoto T. Experimental designs for identifying causal
mechanisms. Journal of the Royal Statistical Society Series A
(Statistics in Society) [Internet] 2013 [cited 2024 Apr 4];176:5–32.
Available from: https://www.jstor.org/stable/23355175
7.
Hernan MA. A definition of causal effect for
epidemiological research. Journal of Epidemiology & Community Health
[Internet] 2004 [cited 2024 May 6];58:265–71. Available from: https://jech.bmj.com/lookup/doi/10.1136/jech.2002.006361
8.
Knoch D, Pascual-Leone A, Meyer K, Treyer V,
Fehr E. Diminishing Reciprocal Fairness by
Disrupting the Right Prefrontal
Cortex. Science [Internet] 2006 [cited 2024 May
7];314:829–32. Available from: https://www.science.org/doi/10.1126/science.1129156
9.
VanderWeele TJ. A unification of mediation and
interaction: A four-way decomposition. Epidemiology (Cambridge, Mass)
[Internet] 2014 [cited 2024 May 14];25:749–61. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220271/
10.
Valeri L, VanderWeele TJ. Mediation analysis
allowing for exposure-mediator interactions and causal interpretation:
Theoretical assumptions and implementation with SAS and
SPSS macros. Psychological methods [Internet] 2013 [cited
2024 May 14];18:137–50. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659198/
11.
Lee
H, Cashin AG, Lamb SE, Hopewell S, Vansteelandt S, VanderWeele TJ,
MacKinnon DP, Mansell G, Collins GS, Golub RM, et al. A
Guideline for Reporting Mediation
Analyses of Randomized Trials and
Observational Studies: The
AGReMA Statement. JAMA [Internet] 2021 [cited
2024 May 15];326:1045–56. Available from: https://doi.org/10.1001/jama.2021.14075
12.
Shi
B, Choirat C, Coull BA, VanderWeele TJ, Valeri L. CMAverse:
A Suite of Functions for
Reproducible Causal Mediation
Analyses. Epidemiology [Internet] 2021 [cited 2024 May
27];32:e20. Available from: https://journals.lww.com/epidem/fulltext/2021/09000/cmaverse__a_suite_of_functions_for_reproducible.23.aspx
13.
Knowler WC, Barrett-Connor E, Fowler SE, Hamman
RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program
Research Group. Reduction
in the incidence of type 2 diabetes with lifestyle intervention or
metformin. The New England Journal of Medicine 2002;346:393–403.
14.
Pan
XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao
HB, et al. Effects of
diet and exercise in preventing NIDDM in people with
impaired glucose tolerance. The Da
Qing IGT and Diabetes
Study. Diabetes Care 1997;20:537–44.
15.
Tuomilehto J, Lindström J, Eriksson JG, Valle
TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M,
Louheranta A, Rastas M, et al. Prevention of type 2
diabetes mellitus by changes in lifestyle among subjects with impaired
glucose tolerance. The New England Journal of Medicine
2001;344:1343–50.
16.
Robins J. A new approach to causal inference in
mortality studies with a sustained exposure period—application to
control of the healthy worker survivor effect. Mathematical Modelling
[Internet] 1986 [cited 2024 May 27];7:1393–512. Available from: https://www.sciencedirect.com/science/article/pii/0270025586900886
17.
Baron RM, Kenny DA. The
moderator–mediator variable distinction in social psychological
research: Conceptual, strategic, and statistical
considerations. Journal of Personality and Social Psychology
1986;51:1173–82.
18.
Tein J-Y, MacKinnon DP. Estimating
Mediated Effects with Survival
Data. In: Yanai H, Okada A, Shigemasu K, Kano Y,
Meulman JJ, editors. New Developments in
Psychometrics. Tokyo: Springer Japan; 2003. p. 405–12.
19.
Sobel ME. Asymptotic Confidence
Intervals for Indirect Effects in
Structural Equation Models.
Sociological Methodology [Internet] 1982 [cited 2024 May 27];13:290–312.
Available from: https://www.jstor.org/stable/270723
20.
Preacher KJ, Hayes AF. SPSS and
SAS procedures for estimating indirect effects in simple
mediation models. Behavior Research Methods, Instruments, &
Computers [Internet] 2004 [cited 2024 May 27];36:717–31. Available from:
https://doi.org/10.3758/BF03206553
21.
Tingley D, Yamamoto T, Hirose K, Keele L, Imai
K. Mediation : R Package for
Causal Mediation Analysis.
Journal of Statistical Software [Internet] 2014 [cited 2024 May 27];59.
Available from: http://www.jstatsoft.org/v59/i05/
22.
VanderWeele TJ, Ding P. Sensitivity
Analysis in Observational
Research: Introducing the
E-Value. Annals of Internal Medicine
2017;167:268–74.
23.
Tchetgen Tchetgen EJ, VanderWeele TJ. On
identification of natural direct effects when a confounder of the
mediator is directly affected by exposure. Epidemiology NIH Public
Access; 2014;25:282.
24.
Rudolph K, Diaz I, Hejazi N, van der Laan M,
Luo S, Shulman M, Campbell A, Rotrosen J, Nunes E. Explaining
differential effects of medication for opioid use disorder using a novel
approach incorporating mediating variables. Addiction Wiley Online
Library; 2020;
25.
Dı́az I, Hejazi NS. Causal mediation analysis
for stochastic interventions. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) Wiley Online Library; 2020;82:661–83.
26.
van
der Laan MJ, Polley EC, Hubbard AE. Super Learner.
Statistical Applications in Genetics and Molecular Biology 2007;6.
27.
Kennedy EH. Nonparametric causal effects based
on incremental propensity score interventions. Journal of the American
Statistical Association Taylor & Francis; 2018;
28.
Hejazi NS, Rudolph KE, Laan MJ van der, Dı́az I.
Nonparametric causal mediation analysis for stochastic interventional
(in) direct effects. Biostatistics [Internet] Oxford University Press;
2022;(in press). Available from: https://arxiv.org/abs/2009.06203
29.
Coyle JR, Hejazi NS, Malenica I, Phillips RV,
Sofrygin O. sl3: Modern pipelines for
machine learning and Super Learning [Internet]. https://github.com/tlverse/sl3; 2022. Available from: https://doi.org/10.5281/zenodo.1342293
30.
van
der Laan MJ, Coyle JR, Hejazi NS, Malenica I, Phillips RV, Hubbard AE.
Targeted Learning in
R
: Causal Data
Science with the tlverse
Software Ecosystem
[Internet]. CRC Press; 2022. Available from: https://tlverse.org/tlverse-handbook31.
Phillips RV. Super (machine) learning. Targeted Learning in
R
: Causal Data Science
with the tlverse
Software Ecosystem. [Internet]
Springer; 2022. Available from: https://tlverse.org/tlverse-handbook/sl3.html32.
Dı́az I, Hejazi NS, Rudolph KE, van der Laan MJ.
Non-parametric efficient causal mediation with intermediate confounders.
Biometrika [Internet] Oxford University Press; 2020; Available from: https://arxiv.org/abs/1912.09936
33.
Klaassen CA. Consistent estimation of the
influence function of locally asymptotically linear estimators. The
Annals of Statistics JSTOR; 1987;1548–62.
34.
Zheng W, van der Laan MJ. Cross-validated
targeted minimum-loss-based estimation. Targeted learning. Springer;
2011. p. 459–74.
35.
Chernozhukov V, Chetverikov D, Demirer M, Duflo
E, Hansen C, Newey W, Robins J. Double/debiased machine learning for
treatment and structural parameters. The Econometrics Journal [Internet]
2018;21. Available from: https://doi.org/10.1111/ectj.12097
36.
Miles CH. On the causal interpretation of
randomized interventional indirect effects. arXiv preprint
arXiv:220300245 [Internet] 2022; Available from: https://arxiv.org/abs/2203.00245
37.
Hejazi NS, Rudolph KE, Dı́az I. medoutcon: Nonparametric efficient causal
mediation analysis with machine learning in R. Journal of
Open Source Software [Internet] The Open Journal; 2022; Available from:
https://doi.org/10.21105/joss.03979
38.
Hejazi NS, Dı́az I, Rudolph KE. medoutcon: Efficient natural and interventional
causal mediation analysis [Internet]. 2022. Available from: https://github.com/nhejazi/medoutcon