References

1.
VanderWeele TJ. Mediation Analysis: A Practitioner’s Guide. Annual Review of Public Health [Internet] 2016 [cited 2022 Aug 17];37:17–32. Available from: https://doi.org/10.1146/annurev-publhealth-032315-021402
2.
Wang A, Arah OA. G-computation demonstration in causal mediation analysis. European Journal of Epidemiology [Internet] 2015 [cited 2023 Jun 20];30:1119–27. Available from: https://doi.org/10.1007/s10654-015-0100-z
3.
Rrn R, Ag C, Mk B, Sm G, H L, Jh M. A Systematic Review of the Reporting Quality of Observational Studies That Use Mediation Analyses. Prevention science : the official journal of the Society for Prevention Research [Internet] 2022 [cited 2023 Sep 27];23. Available from: https://pubmed.ncbi.nlm.nih.gov/35167030/
4.
Rijnhart JJM, Lamp SJ, Valente MJ, MacKinnon DP, Twisk JWR, Heymans MW. Mediation analysis methods used in observational research: A scoping review and recommendations. BMC Medical Research Methodology [Internet] 2021 [cited 2023 Sep 27];21:1–17. Available from: https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-021-01426-3
5.
Tennant PWG, Murray EJ, Arnold KF, Berrie L, Fox MP, Gadd SC, Harrison WJ, Keeble C, Ranker LR, Textor J, et al. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: Review and recommendations. International Journal of Epidemiology [Internet] 2021 [cited 2023 Nov 13];50:620–32. Available from: https://doi.org/10.1093/ije/dyaa213
6.
Imai K, Tingley D, Yamamoto T. Experimental designs for identifying causal mechanisms. Journal of the Royal Statistical Society Series A (Statistics in Society) [Internet] 2013 [cited 2024 Apr 4];176:5–32. Available from: https://www.jstor.org/stable/23355175
7.
Hernan MA. A definition of causal effect for epidemiological research. Journal of Epidemiology & Community Health [Internet] 2004 [cited 2024 May 6];58:265–71. Available from: https://jech.bmj.com/lookup/doi/10.1136/jech.2002.006361
8.
Knoch D, Pascual-Leone A, Meyer K, Treyer V, Fehr E. Diminishing Reciprocal Fairness by Disrupting the Right Prefrontal Cortex. Science [Internet] 2006 [cited 2024 May 7];314:829–32. Available from: https://www.science.org/doi/10.1126/science.1129156
9.
VanderWeele TJ. A unification of mediation and interaction: A four-way decomposition. Epidemiology (Cambridge, Mass) [Internet] 2014 [cited 2024 May 14];25:749–61. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220271/
10.
Valeri L, VanderWeele TJ. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychological methods [Internet] 2013 [cited 2024 May 14];18:137–50. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659198/
11.
Lee H, Cashin AG, Lamb SE, Hopewell S, Vansteelandt S, VanderWeele TJ, MacKinnon DP, Mansell G, Collins GS, Golub RM, et al. A Guideline for Reporting Mediation Analyses of Randomized Trials and Observational Studies: The AGReMA Statement. JAMA [Internet] 2021 [cited 2024 May 15];326:1045–56. Available from: https://doi.org/10.1001/jama.2021.14075
12.
Shi B, Choirat C, Coull BA, VanderWeele TJ, Valeri L. CMAverse: A Suite of Functions for Reproducible Causal Mediation Analyses. Epidemiology [Internet] 2021 [cited 2024 May 27];32:e20. Available from: https://journals.lww.com/epidem/fulltext/2021/09000/cmaverse__a_suite_of_functions_for_reproducible.23.aspx
13.
Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England Journal of Medicine 2002;346:393–403.
14.
Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao HB, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997;20:537–44.
15.
Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. The New England Journal of Medicine 2001;344:1343–50.
16.
Robins J. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Mathematical Modelling [Internet] 1986 [cited 2024 May 27];7:1393–512. Available from: https://www.sciencedirect.com/science/article/pii/0270025586900886
17.
18.
Tein J-Y, MacKinnon DP. Estimating Mediated Effects with Survival Data. In: Yanai H, Okada A, Shigemasu K, Kano Y, Meulman JJ, editors. New Developments in Psychometrics. Tokyo: Springer Japan; 2003. p. 405–12.
19.
Sobel ME. Asymptotic Confidence Intervals for Indirect Effects in Structural Equation Models. Sociological Methodology [Internet] 1982 [cited 2024 May 27];13:290–312. Available from: https://www.jstor.org/stable/270723
20.
Preacher KJ, Hayes AF. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers [Internet] 2004 [cited 2024 May 27];36:717–31. Available from: https://doi.org/10.3758/BF03206553
21.
Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. Mediation : R Package for Causal Mediation Analysis. Journal of Statistical Software [Internet] 2014 [cited 2024 May 27];59. Available from: http://www.jstatsoft.org/v59/i05/
22.
VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Annals of Internal Medicine 2017;167:268–74.
23.
Tchetgen Tchetgen EJ, VanderWeele TJ. On identification of natural direct effects when a confounder of the mediator is directly affected by exposure. Epidemiology NIH Public Access; 2014;25:282.
24.
Rudolph K, Diaz I, Hejazi N, van der Laan M, Luo S, Shulman M, Campbell A, Rotrosen J, Nunes E. Explaining differential effects of medication for opioid use disorder using a novel approach incorporating mediating variables. Addiction Wiley Online Library; 2020;
25.
Dı́az I, Hejazi NS. Causal mediation analysis for stochastic interventions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) Wiley Online Library; 2020;82:661–83.
26.
van der Laan MJ, Polley EC, Hubbard AE. Super Learner. Statistical Applications in Genetics and Molecular Biology 2007;6.
27.
Kennedy EH. Nonparametric causal effects based on incremental propensity score interventions. Journal of the American Statistical Association Taylor & Francis; 2018;
28.
Hejazi NS, Rudolph KE, Laan MJ van der, Dı́az I. Nonparametric causal mediation analysis for stochastic interventional (in) direct effects. Biostatistics [Internet] Oxford University Press; 2022;(in press). Available from: https://arxiv.org/abs/2009.06203
29.
Coyle JR, Hejazi NS, Malenica I, Phillips RV, Sofrygin O. sl3: Modern pipelines for machine learning and Super Learning [Internet]. https://github.com/tlverse/sl3; 2022. Available from: https://doi.org/10.5281/zenodo.1342293
30.
van der Laan MJ, Coyle JR, Hejazi NS, Malenica I, Phillips RV, Hubbard AE. Targeted Learning in R: Causal Data Science with the tlverse Software Ecosystem [Internet]. CRC Press; 2022. Available from: https://tlverse.org/tlverse-handbook
31.
Phillips RV. Super (machine) learning. Targeted Learning in R: Causal Data Science with the tlverse Software Ecosystem. [Internet] Springer; 2022. Available from: https://tlverse.org/tlverse-handbook/sl3.html
32.
Dı́az I, Hejazi NS, Rudolph KE, van der Laan MJ. Non-parametric efficient causal mediation with intermediate confounders. Biometrika [Internet] Oxford University Press; 2020; Available from: https://arxiv.org/abs/1912.09936
33.
Klaassen CA. Consistent estimation of the influence function of locally asymptotically linear estimators. The Annals of Statistics JSTOR; 1987;1548–62.
34.
Zheng W, van der Laan MJ. Cross-validated targeted minimum-loss-based estimation. Targeted learning. Springer; 2011. p. 459–74.
35.
Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, Robins J. Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal [Internet] 2018;21. Available from: https://doi.org/10.1111/ectj.12097
36.
Miles CH. On the causal interpretation of randomized interventional indirect effects. arXiv preprint arXiv:220300245 [Internet] 2022; Available from: https://arxiv.org/abs/2203.00245
37.
Hejazi NS, Rudolph KE, Dı́az I. medoutcon: Nonparametric efficient causal mediation analysis with machine learning in R. Journal of Open Source Software [Internet] The Open Journal; 2022; Available from: https://doi.org/10.21105/joss.03979
38.
Hejazi NS, Dı́az I, Rudolph KE. medoutcon: Efficient natural and interventional causal mediation analysis [Internet]. 2022. Available from: https://github.com/nhejazi/medoutcon